CPSC 330 Section 2
Home
Lectures
Lecture 8: Hyperparameter Optimization
Overview
Lecture 1: Course introduction
Lecture 2: Terminology, baselines, decision Trees
Lecture 3: ML fundamentals
Lecture 4:
\(k\)
-nearest neighbours and SVM RBFs
Lecture 5: Preprocessing and sklearn pipelines
Lecture 6:
sklearn
column transformer and text fearutres
Lecture 7: Linear models
Lecture 8: Hyperparameter Optimization
Lecture 9: Classification metrics
Lecture 10: Regression metrics
Lecture 11: Ensembles
Lecture 8: Hyperparameter Optimization
Hyperparameter optimization and optimization bias
Slides
View slides in full screen
Outline
Why hyperparameter optimization?
Hyperparameter optimization using sklearn’s GridSearchCV and RandomizedSearchCV
Optimization bias
Lecture 7: Linear models
Lecture 9: Classification metrics