CPSC 330 Section 2
Home
Lectures
Lecture 1: Course introduction
Overview
Lecture 1: Course introduction
Lecture 2: Terminology, baselines, decision Trees
Lecture 3: ML fundamentals
Lecture 4:
\(k\)
-nearest neighbours and SVM RBFs
Lecture 5: Preprocessing and sklearn pipelines
Lecture 6:
sklearn
column transformer and text fearutres
Lecture 7: Linear models
Lecture 8: Hyperparameter Optimization
Lecture 9: Classification metrics
Lecture 10: Regression metrics
Lecture 11: Ensembles
Lecture 12: Feature importances
Lecture 13: Feature engineering and selection
Lecture 14: K Means
Lecture 15: DBSCAN and hierarchical
Lecture 16: Recommender systems
Lecture 1: Course introduction
Introduction to CPSC 330
Slides
View slides in full screen
Outline
What is machine learning
Types of machine learning
Learning to navigate through the course materials
Getting familiar with the course policies
Overview
Lecture 2: Terminology, baselines, decision Trees